
Information Theory, Inference, and Learning Algorithms
David J.C. MacKay
Information Theory, Inference, and Learning Algorithms
David J.C. MacKay
Book Details:
Year: | 2003 |
Publisher: | Cambridge University Press |
Pages: | 640 pages |
Language: | english |
Since: | 18/09/2017 |
Size: | 11.40 MB |
License: | Open Access |
Content:
This book is aimed at senior undergraduates and graduate students in Engineering, Science, Mathematics, and Computing. It expects familiarity with calculus, probability theory, and linear algebra as taught in a first- or secondyear undergraduate course on mathematics for scientists and engineers.
Conventional courses on information theory cover not only the beautiful theoretical ideas of Shannon, but also practical solutions to communication problems. This book goes further, bringing in Bayesian data modelling, Monte Carlo methods, variational methods, clustering algorithms, and neural networks.
Why unify information theory and machine learning? Because they are two sides of the same coin. In the 1960s, a single field, cybernetics, was populated by information theorists, computer scientists, and neuroscientists, all studying common problems. Information theory and machine learning still belong together. Brains are the ultimate compression and communication systems. And the state-of-the-art algorithms for both data compression and error-correcting codes use the same tools as machine learning
Categories:
Tags:
Loading comments...
Scanning lists...
The book in numbers
rank in categories
online since
18/09/2017rate score
Nothing yet...votes
Nothing yet...Social likes
Nothing yet...Views
Downloads
Interest
Countries segmentation
Source Referers
Websites segmentation
evolution
Loading...