¿Qué está mal?

Aviso: Antes de informar sobre un error con la descarga, por favor, prueba el enlace directo: Algebraic and geometric methods in enumerative combinatorics

Cargando...

Debes iniciar sesión para hacer esto.

# Algebraic and geometric methods in enumerative combinatorics

## Federico Ardila

Puntuación: ---- | 0 votos
| Enviando voto
|

### Detalles del libro:

pos
Global
pos
Categoría
 Año: 2015 Editor: San Francisco State University Páginas: 144 páginas Idioma: inglés Desde: 15/12/2015 Tamaño: 1.39 MB Licencia: Pendiente de revisión

### Contenido:

Enumerative combinatorics is about counting. The typical question is to find the number of objects with a given set of properties.

However, enumerative combinatorics is not just about counting. In “real life”, when we talk about counting, we imagine lining up a set of objects and counting them off: 1, 2, 3, ... However, families of combinatorial objects do not come to us in a natural linear order. To give a very simple example: we do not count the squares in an m × n rectangular grid linearly. Instead, we use the rectangular structure to understand that the number of squares is m· n. Similarly, to count a more complicated combinatorial set, we usually spend most of our efforts understanding the underlying structure of the individual objects, or of the set itself.

Many combinatorial objects of interest have a rich and interesting algebraic or geometric structure, which often becomes a very powerful tool towards their enumeration. In fact, there are many families of objects that we only know how to count using these tools.

## Escaneando listas...

15/12/2015

Nothing yet...

Nothing yet...

Nothing yet...

### Descargas

Esto puede tardar un momento

### Interés

#### Segmentación por países

Esto puede tardar un momento