¿Qué está mal?

Aviso: Antes de informar sobre un error con la descarga, por favor, prueba el enlace directo: Combinatorial maps


Debes iniciar sesión para hacer esto.

Combinatorial maps

Combinatorial maps

Combinatorial maps

Puntuación: ---- | 0 votos
| Enviando voto
| ¡Votado!

Detalles del libro:

Editor:Latvian University
Páginas:61 páginas
Tamaño:216 KB
Licencia:Pendiente de revisión


A combinatorial map is a combinatorial object modelling topological structures with subdivided objects. Historically, the concept was introduced informally by J. Edmonds for polyhedral surfaces which are planar graphs. It was given its first definite formal expression under the name "Constellations" by A. Jacques but the concept was already extensively used under the name "rotation" by Gerhard Ringel and J.W.T. Youngs in their famous solution of the Heawood map-coloring problem. The term "constellation" was not retained and instead "combinatorial map" was favored. The concept was later extended to represent higher-dimensional orientable subdivided objects. Combinatorial maps are used as efficient data structures in image representation and processing, in geometrical modeling. This model is related to simplicial complexes and to combinatorial topology. Note that combinatorial maps were extended to generalized maps that allow also to represent non-orientable objects like the Möbius strip and the Klein bottle. A combinatorial map is a boundary representation model; it represents object by its boundaries.

Several applications require a data structure to represent the subdivision of an object. For example, a 2D object can be decomposed into vertices (0-cells), edges (1-cells), and faces (2-cells). More generally, an n-dimensional object is composed with cells of dimension 0 to n. Moreover, it is also often necessary to represent neighboring relations between these cells.

Thus, we want to describe all the cells of the subdivision, plus all the incidence and adjacency relations between these cells. When all the represented cells are simplexes, a simplicial complex can be used, but when we want to represent any type of cells, we need to use cellular topological model, like combinatorial maps or generalized maps.




Cargando comentarios...

Escaneando listas...

El libro en números

Posición global

posición en categorías

en catálogo desde



Nothing yet...


Nothing yet...

'LIKES' sociales

Nothing yet...



Esto puede tardar un momento


Segmentación por países

Esto puede tardar un momento

Páginas de entrada

Segmentación por sitios web


Esto puede tardar un momento