
Information Theory, Inference, and Learning Algorithms
David J.C. MacKay
Information Theory, Inference, and Learning Algorithms
David J.C. MacKay
Detalles del libro:
Año: | 2003 |
Editor: | Cambridge University Press |
Páginas: | 640 páginas |
Idioma: | inglés |
Desde: | 18/09/2017 |
Tamaño: | 11.40 MB |
Licencia: | Open Access |
Contenido:
This book is aimed at senior undergraduates and graduate students in Engineering, Science, Mathematics, and Computing. It expects familiarity with calculus, probability theory, and linear algebra as taught in a first- or secondyear undergraduate course on mathematics for scientists and engineers.
Conventional courses on information theory cover not only the beautiful theoretical ideas of Shannon, but also practical solutions to communication problems. This book goes further, bringing in Bayesian data modelling, Monte Carlo methods, variational methods, clustering algorithms, and neural networks.
Why unify information theory and machine learning? Because they are two sides of the same coin. In the 1960s, a single field, cybernetics, was populated by information theorists, computer scientists, and neuroscientists, all studying common problems. Information theory and machine learning still belong together. Brains are the ultimate compression and communication systems. And the state-of-the-art algorithms for both data compression and error-correcting codes use the same tools as machine learning
Categorías:
Etiquetas:
Cargando comentarios...
Escaneando listas...
El libro en números
posición en categorías
en catálogo desde
18/09/2017puntuación
Nothing yet...votos
Nothing yet...'LIKES' sociales
Nothing yet...Visitas
Descargas
Interés
Segmentación por países
Páginas de entrada
Segmentación por sitios web
evolución
Cargando...