¿Qué está mal?

Aviso: Antes de informar sobre un error con la descarga, por favor, prueba el enlace directo: Statistical Learning and Sequential Prediction

Cargando...

Debes iniciar sesión para hacer esto.

Statistical Learning and Sequential Prediction

Statistical Learning and Sequential Prediction

,

Statistical Learning and Sequential Prediction

,

Puntuación: ---- | 0 votos
| Enviando voto
| ¡Votado!
|

Detalles del libro:

pos
Global
pos
Categoría
Año:2014
Editor:Autoedición
Páginas:261 páginas
Idioma:inglés
Desde:07/06/2016
Tamaño:2.40 MB
Licencia:Open Access

Contenido:

This course will focus on theoretical aspects of Statistical Learning and Sequential Prediction. Until recently, these two subjects have been treated separately within the learning community. The course will follow a unified approach to analyzing learning in both scenarios. To make this happen, we shall bring together ideas from probability and statistics, game theory, algorithms, and optimization. It is this blend of ideas that makes the subject interesting for us, and we hope to convey the excitement. We shall try to make the course as self-contained as possible, and pointers to additional readings will be provided whenever necessary. Our target audience is graduate students with a solid background in probability and linear algebra.

“Learning” can be very loosely defined as the “ability to improve performance after observing data”. Over the past two decades, there has been an explosion of both applied and theoretical work on machine learning. Applications of learning methods are ubiquitous: they include systems for face detection and face recognition, prediction of stock markets and weather patterns, speech recognition, learning user’s search preferences, placement of relevant ads, and much more. The success of these applications has been paralleled by a well-developed theory. We shall call this latter branch of machine learning – “learning theory”.

Why should one care about machine learning? Many tasks that we would like computers to perform cannot be hard-coded. The programs have to adapt. The goal then is to encode, for a particular application, as much of the domain-specific knowledge as needed, and leave enough flexibility for the system to improve upon observing data.

Categorías:

Etiquetas:

Cargando comentarios...

Escaneando listas...

El libro en números

Posición global

posición en categorías

en catálogo desde

07/06/2016

puntuación

Nothing yet...

votos

Nothing yet...

'LIKES' sociales

Nothing yet...

Visitas

Descargas

Esto puede tardar un momento

Interés

Segmentación por países

Esto puede tardar un momento

Páginas de entrada

Segmentación por sitios web

evolución

Esto puede tardar un momento

Cargando...